from haystack.backends.elasticsearch2_backend import Elasticsearch2SearchBackend, Elasticsearch2SearchEngine
from haystack.models import SearchResult
import elasticsearch
[docs]class JHBElasticsearch2SearchBackend(Elasticsearch2SearchBackend):
RESERVED_CHARACTERS = (
'\\', '+', '-', '&&', '||', '!', '(', ')', '{', '}',
'[', ']', '^', '"', '~', ':', '/', #'*', '?',
)
DEFAULT_SETTINGS = {
'settings': {
"analysis": {
"analyzer": {
"ngram_analyzer": {
"type": "custom",
"tokenizer": "standard",
"filter": ["haystack_ngram", "lowercase"]
},
"edgengram_analyzer": {
"type": "custom",
"tokenizer": "standard",
"filter": ["haystack_edgengram", "lowercase"]
}
},
"tokenizer": {
"haystack_ngram_tokenizer": {
"type": "nGram",
"min_gram": 3,
"max_gram": 15,
},
"haystack_edgengram_tokenizer": {
"type": "edgeNGram",
"min_gram": 3,
"max_gram": 15,
"side": "front"
}
},
"filter": {
"haystack_ngram": {
"type": "nGram",
"min_gram": 3,
"max_gram": 15
},
"haystack_edgengram": {
"type": "edgeNGram",
"min_gram": 3,
"max_gram": 15
}
}
}
}
}
[docs] def search(self, query_string, **kwargs):
if len(query_string) == 0:
return {
'results': [],
'hits': 0,
}
if not self.setup_complete:
self.setup()
search_kwargs = self.build_search_kwargs(query_string, **kwargs)
search_kwargs['from'] = kwargs.get('start_offset', 0)
order_fields = set()
for order in search_kwargs.get('sort', []):
for key in order.keys():
order_fields.add(key)
geo_sort = '_geo_distance' in order_fields
end_offset = kwargs.get('end_offset')
start_offset = kwargs.get('start_offset', 0)
if end_offset is not None and end_offset > start_offset:
search_kwargs['size'] = end_offset - start_offset
try:
raw_results = self.conn.search(body=search_kwargs,
index=self.index_name,
doc_type='modelresult',
_source=True)
except elasticsearch.TransportError as e:
if not self.silently_fail:
raise
self.log.error("Failed to query Elasticsearch using '%s': %s", query_string, e, exc_info=True)
raw_results = {}
return self._process_results(raw_results,
highlight=kwargs.get('highlight'),
result_class=kwargs.get('result_class', SearchResult),
distance_point=kwargs.get('distance_point'),
geo_sort=geo_sort)
[docs]class JHBElasticsearch2SearchEngine(Elasticsearch2SearchEngine):
backend = JHBElasticsearch2SearchBackend