tethne.analyze.features module¶
Methods for analyzing featuresets.
| cosine_distance | Calculate cosine distance for sparse feature vectors. | 
| cosine_similarity | Calculate cosine similarity for sparse feature vectors. | 
| distance | Calculate the distance between two sparse feature vectors using a method from scipy.spatial.distance. | 
| kl_divergence | Calculate Kullback-Leibler Distance for sparse feature vectors. | 
- tethne.analyze.features.cosine_distance(sa, sb)[source]¶
- Calculate cosine distance for sparse feature vectors. - Uses the cosine method in scipy.spatial.distance. - Parameters: - sa : list - sb : list - Returns: - distance : float - Cosine distance. 
- tethne.analyze.features.cosine_similarity(sa, sb)[source]¶
- Calculate cosine similarity for sparse feature vectors. - Uses the cosine method in scipy.spatial.distance. - Parameters: - sa : list - sb : list - Returns: - similarity : float - Cosine similarity 
- tethne.analyze.features.distance(sa, sb, method, normalize=True, smooth=False)[source]¶
- Calculate the distance between two sparse feature vectors using a method from scipy.spatial.distance. - Supported distance methods: - Method - Documentation - braycurtis - scipy.org - canberra - scipy.org - chebyshev - scipy.org - cityblock - scipy.org - correlation - scipy.org - cosine - scipy.org - dice - scipy.org - euclidean - scipy.org - hamming - scipy.org - jaccard - scipy.org - kulsinski - scipy.org - matching - scipy.org - rogerstanimoto - scipy.org - russellrao - scipy.org - sokalmichener - scipy.org - sokalsneath - scipy.org - sqeuclidean - scipy.org - yule - scipy.org - Parameters: - sa : list - sb : list - method : str - Name of a method in scipy.spatial.distance (see above). - normalize : bool - (default: True) If True, sa and sb are normalized so that they each sum to 1.0. - smooth : bool - (default: False) If True, uses the smoothing method described in Bigi 2003 - Returns: - distance : float - Distance value from method. 
- tethne.analyze.features.kl_divergence(sa, sb)[source]¶
- Calculate Kullback-Leibler Distance for sparse feature vectors. - Uses the smoothing method described in Bigi 2003 to facilitate better comparisons between vectors describing wordcounts. - Parameters: - sa : list - sb : list - Returns: - divergence : float - KL divergence. 

